

1)
$$(4^2)^3$$

1)
$$(4^{2})^{3}$$
 2) $5^{3} \cdot 5^{-1}$

$$3)\sqrt{81} = 9$$

$$3)\sqrt{81} = 9$$
 4) $\sqrt[3]{8} = 2$

Welcome Back!

Semester Breakdown

4 Tests

- Trigonometry
- Rational Exponents & Radical Function
- Exponential & Logarithmic Functions
- Rational Functions

Grading

Test 60%

Final 20%

Homework/ DLT/ Classwork 20%

Retake Policy

*Two unit tests per semester.

*You must complete the following <u>prior</u> to test retake day:

- Fully correct all the mistakes from the test.
- All Daily Learning Target quizzes from the unit must me corrected.
- All homework from the unit must be completed.
- Complete an additional review assignment

Chapter 6 Section 1

Objectives:

- *Evaluate nth roots.
- *Evaluate expressions with rational exponents.
- *Use/Apply the properties of Exponents.

PROPERTIES OF EXPONENTS

Let a and b be real numbers and let m and n be integers.

Product of Powers Property $a^m \cdot a^n = a^{m+n}$

Power of a Power Property $(a^m)^n = a^{mn}$

Power of a Product Property $(ab)^m = a^m b^m$

Negative Exponent Property $a^{-m} = \frac{1}{4}$

Zero Exponent Property $a^0 =$

Quotient of Powers Property $\frac{a^m}{a^n} = (^{\wedge})$

Power of a Quotient Property $\left(\frac{a}{b}\right)^m = \frac{a}{b}$

Product of Powers

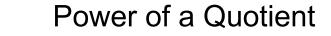
$$a^m \cdot a^n = a^{m+n}$$

Power of a Power (a^m)ⁿ=a^{mn}

Ex:
$$(4^2)^4$$

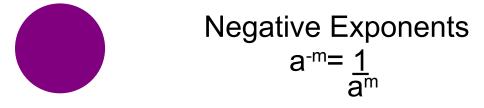
Ex:
$$(x^{-3})^{-2}$$

Power of a Product (ab)^m=a^mb^m


Ex: $(x^{-2}y^{-3})^{-1}$

Quotient of Powers

$$\frac{\underline{a}^{m}}{\underline{a}^{n}} = \underline{a}^{m-n}$$


Ex:
$$\frac{6^2}{6^{-4}}$$

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$

Ex:
$$(\frac{2}{9})^3$$
 $\frac{2^3}{9^3} = \frac{8}{729}$

Ex 2:
$$\left(\frac{x^2y^4}{xy^{-2}}\right)^2$$

Ex:
$$7^{-2} = \frac{1}{7^2}$$

Zero Exponent a⁰= 1

Ex: (-214)⁰

Ex 2: (ab)⁰

TOYO

Putting it all together!

Ex:
$$(2x^4y^2)^3$$

 $(2x^1y^8)^3$
 $(2x^1y^8)^3 = 8x^3$
 $(2x^1y^8)^3 = 8x^3$

Ex 2:
$$(x^{-3}y^{3})^{2}$$
 $x^{5}y^{6}$ $x^{5}y^{6}$ $x^{5}y^{6}$ $x^{5}y^{6}$ $x^{5}y^{6}$ $x^{5}y^{6}$

Green Exponent WS

(10 minutes)

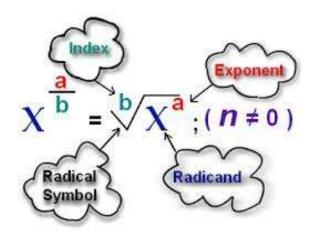
-Finish for homework.

What is the difference between simplifying & evaluating expressions?

What are some examples of perfect squares?

Evaluate
$$1^2$$
=
 2^2 =
 3^2 =
 4^2 =
 5^2 =
 6^2 =
 7^2 =
 8^2 =
 9^2 =
 10^2 =

$$11^{2} = 12^{2} = 13^{2} = 14^{2} = 15^{2} = 16^{2} = 17^{2} = 18^{2} = 19^{2} = 20^{2} = 110^$$


Evaluate	1 ² =	1	11 ² =	121
	2 ² =	_	$12^2 =$	144
	3 ² =		$13^2 =$	169
	4 ² =		14 ² =	196
	5 ² =		$15^2 =$	225
	6 ² =		$16^2 =$	256
	$7^2 =$	_	17 ² =	289
	/ - 8 ² =		18 ² =	
	_		19 ² =	
	$9^2 =$	_	20 ² =	
	$10^2 =$	100	LU -	700

Common Perfect Squares, Cubes, Fourth Powers, and Fifth Powers

number	collare	cube	4 th power	5 th power
	square	8	16	32
2	4 9			
3		27	81	243
4	16	64	256	
2 3 4 5	25	125	625	
6	36	216		
7	49			
8	64			
9	81			
10	100			
11	121			
12	144			
13	169			
14	196			
15	225			
16	256			
17	289			
18	324			
19	361			
20	400			

Rational Exponents

Find nth roots

Real number a	Integer n	Root(s) of a	Example
a > 0	n > 0, n is even.	$\sqrt[p]{a}$, $-\sqrt[p]{a}$	$\sqrt[4]{81} = 3, -\sqrt[4]{81} = -3$
a > 0 or a < 0	n is odd.	∜ā	$\sqrt[3]{-8} = -2$
a < 0	n is even.	No real roots	$\sqrt{-4}$ is not a real number.
a = 0	n is even or odd.	$\sqrt[n]{0} = 0$	$\sqrt[5]{0} = 0$

Ex: n=3, a=-216

Ex 2: n=4, a=81

Find nth roots

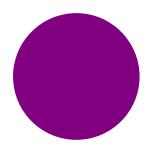
Real number a	Integer n	Root(s) of a	Example
a > 0	n > 0, n is even.	$\sqrt[n]{a}$, $-\sqrt[n]{a}$	$\sqrt[4]{81} = 3, -\sqrt[4]{81} = -3$
a > 0 or a < 0	n is odd.	<i>\$√a</i>	$\sqrt[3]{-8} = -2$
a < 0	n is even.	No real roots	$\sqrt{-4}$ is not a real number.
a = 0	n is even or odd.	$\sqrt[n]{0} = 0$	$\sqrt[5]{0} = 0$

Ex: n = 5, a = 243

Ex: 4/-64

Rational exponents
$$a^{m/n} = (a^{1/n})^m = (\sqrt[n]{a})^m$$

$$a^{-m/n} = \underline{1} = \underline{1} \quad ,a \neq 0$$


$$a^{m/n} \quad (a^{1/n})^m \quad (\sqrt[n]{a})^m$$

Rational Exponent Form

Radical Form

Ex: 16^{3/2}

Ex 2: 32^{-3/5}

Rational exponents
$$a^{m/n} = (a^{1/n})^m = (\sqrt[n]{a})^m$$

$$a^{-m/n} = \underline{1} = \underline{1} , a \neq 0$$


$$a^{m/n} (a^{1/n})^m (\sqrt[n]{a})^m$$

Ex 3: 4^{5/2}

Rational Exponent Form

Radical Form

Ex 4: 9^{-1/2}

Rational exponents
$$a^{m/n} = (a^{1/n})^m = (\sqrt[n]{a})^m$$

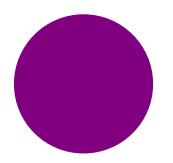
$$a^{-m/n} = \underline{1} = \underline{1} , a \neq 0$$

$$a^{m/n} (a^{1/n})^m (\sqrt[n]{a})^m$$

Rational Exponent Form

Ex 5: 813/4

Radical Form


Ex 6: (\dd/16)5

Evaluating expressions using a calculator.

Ex: 25^{-1/3}

Ex 2:\⁵/32,768

HOMEWORK

Page 417# 10, 13, 21-32, 39-41 53-57, 60, 62 Butter